MEMORANDUM

To:	ECM Management
From:	Lisa Valdez, Senior Transportation Planner
Subjec:	Trip Generation and Queuing Analysis for the Main Street Warehouse Project, City of Carson
Date:	March 9, 2022
cc:	Sean Kilkenny, Senior Project Manager, Dudek
Attachment(s):	Attachment A: ITE Land Use Descriptions
	Attachment B: Queuing Analysis Worksheets
	Attachment C: Raw Traffic Count Data

The purpose of this Transportation Technical Memorandum is to conduct a focused site access analysis for the proposed Main Street Warehouse Project (proposed project or project), in the City of Carson (City). The following Memo describes the proposed project and study area, presents the estimated project trip generation and evaluates the site access.

1 Project Description and Study Area

The proposed project is located on a 2.67 -acre industrial site at 18001 South Main Street in the City of Carson. Figure 1 provides a map of the transportation study area and Figure 2 presents the proposed project site plan. The project applicant is requesting approval of required entitlements for the construction and operation of an approximately 60,558 -square-foot on-spec concrete tilt-up warehouse building and site improvements on an existing industrial site. The project would involve the demolition of an existing vacant manufacturing building (approximately 58,961 square feet) and the site is surrounded by other light and heavy industrial uses. The project site is located within the MH_D (Manufacturing, Heavy - with Site Plan and Design Review Overlay) zone with a General Plan Land Use designation of Heavy Industrial. Access to the site is proposed from two existing driveways on Main Street.

The project site is located on the west side of Main Street, between Victoria Street and Albertoni Street, and the focus of this analysis is on this segment of Main Street. Main Street is a north-south four lane road with a two-way left turn lane (TWLTL). Two raised medians are also provided on Main Street at each end of the study area segment. Main Street, in the study area, is classified as a Major Highway in the City's Transportation and Infrastructure Element ${ }^{1}$. Main Street is also a designated truck route, between Alondra Boulevard to the north and Torrance Boulevard to the south. Sidewalks are provided on both sides of the street, with parking permitted along most of its length. Currently, there are no bus routes along Main Street, near the project site, or bicycle facilities. The speed limit on Main Street is 40 MPH .

[^0]
SOURCE: Bing Maps 2021; Herdman Architecture + Design 2021

2 Project Trip Generation

The project includes the construction of a 60,558-square-foot warehouse and the demolition of an existing 58,961 square feet manufacturing building. Trip generation estimates for the proposed project are based on daily and AM and PM peak hour trip generation rates obtained from the Institute of Transportation Engineers (ITE) Trip Generation Handbook, $11^{\text {th }}$ Edition ${ }^{2}$. As a conservative analysis, Dudek reviewed the trip generation rates for three potential warehouse uses, including General Warehousing (ITE Code 150), High-Cube Fulfillment Center (ITE Code 155), and High Cube Parcel Warehouse (ITE Code 156). No cold storage would be proposed as part of the project, therefore rates for this type of warehouse were not included in the evaluation. A description of each land use code is provided as Attachment A.

The potential project trip generation is presented in Table 1. Based on ITE rates, the project could generate approximately 104 to 280 daily trips, 9 to 42 AM peak hour trips, and 10 to 39 PM peak hour trips. This equates to 155 to 420 daily passenger car equivalents (PCEs), 14 to 64 AM peak hour PCEs, and 15 to 59 PM peak hour PCEs.

Table 1. Project Trip Generation

Land Use	ITE Code	Size/ Units	Daily	AM Peak Hour			PM Peak Hour		
				In	Out	Total	In	Out	Total
TRIP RATES ${ }^{1}$									
A. Warehousing	150	60.558	1.71	0.13	0.04	0.17	0.05	0.13	0.18
B. High-Cube Fulfillment	155	60.558	1.81	0.12	0.03	0.15	0.06	0.10	0.16
C. High-Cube Parcel	156	60.558	4.63	0.35	0.35	0.70	0.44	0.20	0.64
TRIP GENERATION- WAREHOUSE (150)									
Vehicle Mix ${ }^{3}$		Percent ${ }^{3}$							
Passenger Vehicles		69.0\%	71	5	2	7	2	5	8
2-Axle Trucks		6.8\%	7	1	0	1	0	1	1
3-Axle Trucks		5.5\%	6	0	0	1	0	0	1
4+-Axle Trucks		18.7\%	19	1	0	2	1	2	2
Project Trip Generation Non-PCE			104	8	2	10	3	8	11
Vehicle Mix ${ }^{3}$		PCE Factor ${ }^{4}$							
Passenger Vehicles		1.0	71	5	2	7	2	5	8
2-Axle Trucks		2.0	14	1	0	1	0	1	1
3-Axle Trucks		2.0	11	1	0	1	0	1	1
4+-Axle Trucks		3.0	58	4	1	6	2	4	6
Project Trip Generation W/PCE			155	12	4	16	5	11	16
TRIP GENERATION- HIGH-CUBE FULFILLMENT (155)									
Vehicle Mix ${ }^{3}$		Percent ${ }^{3}$							
Passenger Vehicles		69.0\%	76	5	1	6	3	4	7
2-Axle Trucks		6.8\%	7	1	0	1	0	0	1
3-Axle Trucks		5.5\%	6	0	0	0	0	0	1
4+-Axle Trucks		18.7\%	20	1	0	2	1	1	2

[^1]
Table 1. Project Trip Generation

Land Use	ITE Code	Size/ Units	Daily	AM Peak Hour			PM Peak Hour		
				In	Out	Total	In	Out	Total
Project Trip Generation Non-PCE			110	7	2	9	4	6	10
Vehicle Mix ${ }^{3}$		PCE Factor ${ }^{4}$							
Passenger Vehicles		1.0	76	5	1	6	3	4	7
2-Axle Trucks		2.0	15	1	0	1	1	1	1
3-Axle Trucks		2.0	12	1	0	1	0	1	1
4+-Axle Trucks		3.0	61	4	1	5	2	3	5
Project Trip Generation W/PCE			164	11	3	14	6	9	15
TRIP GENERATION- HIGH-CUBE FPARCEL (156)									
Vehicle Mix ${ }^{3}$		Percent ${ }^{3}$							
Passenger Vehicles		69.0\%	193	15	15	29	18	9	27
2-Axle Trucks		6.8\%	19	1	1	3	2	1	3
3-Axle Trucks		5.5\%	15	1	1	2	1	1	2
4+-Axle Trucks		18.7\%	52	4	4	8	5	2	7
Project Trip Generation Non-PCE			280	21	21	42	26	12	39
Vehicle Mix ${ }^{3}$		PCE Factor ${ }^{4}$							
Passenger Vehicles		1.0	193	15	15	29	18	9	27
2-Axle Trucks		2.0	38	3	3	6	4	2	5
3-Axle Trucks		2.0	31	2	2	5	3	1	4
4+-Axle Trucks		3.0	157	12	12	24	15	7	22
Project Trip Generation W/PCE			420	32	32	64	39	19	59

Notes: TSF = Thousand Square Feet; Rounding errors may occur
${ }^{1}$ Trip rates from the Institute of Transportation Engineers (ITE), Trip Generation, 11th Edition, 2021.
${ }^{2}$ Trip Generation (without trip credit applied) is shown for site queuing analysis only.
${ }^{3}$ Vehicle Mix and Percent from SCAQMD, Warehouse Truck Trip Study Data Results and Usage, July 2014.
${ }^{4}$ Passenger Car Equivalent (PCE) factors are assumed to be 1.0 for passenger vehicles, 2.0 for medium trucks, and 3.0 for heavy trucks.

Table 2 presents the project trip generation based on applying a trip credit for the existing manufacturing building to be demolished. The trip generation rates for all three rates evaluated for the proposed use are presented. In most instances, the proposed project generates fewer trips than the existing manufacturing use. As shown in Table 2 , using the highest, most conservative rate for the proposed use (ITE Code 156), the project would generate no new daily trips, a net increase in 2 AM peak hour trips, and a net decrease in 5 PM peak hour trips.

Table 2. Project Trip Generation with Trip Credit

Land Use	ITE Code	Size/Units	Daily	AM Peak Hour			PM Peak Hour		
				In	Out	Total	In	Out	Total
TRIP GENERATION - WAREHOUSE (150)									
Proposed	150	60.558	104	8	2	10	3	8	11
Existing	140	58.961	280	30	10	40	14	30	44
Net Change		1.597	-176	-22	-8	-30	-11	-22	-33
TRIP GENERATION- HIGH-CUBE FULFILLMENT (155)									
Proposed	155	60.558	110	7	2	9	4	6	10
Existing	140	58.961	280	30	10	40	14	30	44
Net Change		1.597	-170	-23	-8	-31	-10	-24	-34
TRIP GENERATION- HIGH-CUBE PARCEL (156)									
Proposed	156	60.558	280	21	21	42	26	12	39
Existing	140	58.961	280	30	10	40	14	30	44
Net Change		1.597	0	-9	12	2	13	-18	-5

Notes: TSF = Thousand Square Feet; Rounding errors may occur
${ }^{1}$ Trip rates from the Institute of Transportation Engineers (ITE), Trip Generation, 11th Edition, 2021.
${ }^{2}$ Trip rates for the existing use are based on ITE Code 140 (Manufacturing) which has a daily rate of 4.75 , an AM peak hour rate of 0.68 (0.52 in and 0.16 out), and a PM peak hour rate of 0.74 (0.23 in and 0.51 out).

3 Site Access

Vehicular access to the Project site is proposed from two existing driveways on Main Street, with minor improvements proposed. The existing driveways will be removed and reconstructed per the City's engineering design standards. The northern driveway is proposed to be approximately 39 feet wide with full access provided. The southern driveway is proposed to be 30 feet wide and restricted to right turn in and right turn out movements only, due to the existing raised median on Main Street, near the driveway. The median is approximately 281 -feet-in length. A two-way left turn lane is provided on Main Street along the remainder of the project frontage.

3.1 Queuing Analysis

A queuing analysis was prepared for the project driveways to assess the adequacy of any off-site storage lanes into the project site, as well as the adequacy of driveway throat lengths and space on-site for vehicles to queue without effecting the internal circulation on the project site. Queuing was analyzed utilizing the SimTraffic software, which calculates the $95^{\text {th }}$ percentile (design) queue. All queuing analysis data and SimTraffic queuing worksheets are provided in Attachment B. As a conservative analysis, the queuing analysis was conducted for all three ITE rates evaluated for the project.

AM and PM peak hour turning movement counts were collected on October 14, 2021 at the unsignalized intersection of Main Street and Savarona Drive, across from the project site and were used to calculate the Existing plus Project queues. The raw traffic counts worksheets are provided in Attachment C.

As shown in Table 3, none of the calculated $95^{\text {th }}$ percentile (design) queues exceed storage capacities along Main Street. None of the queues would conflict with turning movements into or out of the project site, within the internal access drive aisles, or along Main Street with the addition of Project traffic during the Existing plus Project conditions. The longest $95^{\text {th }}$ percentile queue is shown for the westbound left-through-right turning movement at the south project driveway, reaching 61 feet in the PM peak hour under Existing plus Project conditions.

Table 3. Peak-Hour Queuing Summary for Existing Plus Project Conditions

No.	Intersection	Movement ${ }^{1}$	Pocket Length1	Existing plus Project			
				AM Peak Hour		PM Peak Hour	
				95th Percentile Queue ${ }^{2}$	Exceeds Turn Pocket Length?	95th Percentile Queue ${ }^{2}$	Exceeds Turn Pocket Length?
QUEUING ANALYSIS- WAREHOUSE (150)							
1	Main Street/North Project Driveway	EBLR	500	21	No	34	No
		NBL	150	16	No	9	No
2	Main Street/South Project Driveway	EBR	500	10	No	22	No
		WBLTR	125	40	No	61	No
		SBLT	$150{ }^{3}$	42	No	23	No
QUEUING ANALYSIS- HIGH-CUBE FULFILLMENT (155)							
1	Main Street/North Project Driveway	EBLR	500	15	No	28	No
		NBL	150	15	No	13	No
2	Main Street/South Project Driveway	EBR	500	8	No	21	No
		WBLTR	125	40	No	61	No
		SBLT	1503	43	No	23	No
QUEUING ANALYSIS- HIGH-CUBE PARCEL (156)							
1	Main Street/North Project Driveway	EBLR	500	45	No	36	No
		NBL	150	26	No	33	No
2	Main Street/South Project Driveway	EBR	500	30	No	30	No
		WBLTR	125	40	No	61	No
		SBLT	1503	43	No	23	No

Source: Attachment B
Notes: EBLR = eastbound left-right; NBL = northbound left; EBR = eastbound right; WBLTR = westbound left-through-right; SBLT = southbound left-through
${ }^{1}$ Measured in feet.
${ }^{2}$ Based on 95th percentile (design) queue length in SimTraffic 10
${ }^{3}$ Length measured from nearest intersection.

3.2 Pedestrian and Bicycle Access

The site is in an existing industrial area with limited pedestrian and bicycle activity. Sidewalks are located on both sides of Main Street and there are currently no bike facilities. The City of Carson Master Plan of Bikeways ${ }^{3}$ was adopted by the City Council in August 2013 and proposes an extensive network of streets designed to be safe and comfortable for bicyclists, with the goal of enhancing the practical use of bicycles as a transportation choice. Between Alondra Street to the north and Victoria Street to the south, the plan proposes to add six-foot bike lanes to sections of Main Street with a raised median and six-foot bike lanes with a two-foot buffer to sections without a median.

Bicyclist and pedestrian safety would be maintained at existing levels in the area since the project is not changing the existing land use and would result in a negligible increase in project related trips. The project is proposing to reconstruct the existing driveways on Main Street to meet the City's design standards and would be improved over existing conditions. The project would not include any other site improvements that would extend into the public right-of-way or alter the existing roadway network. Therefore, the project would also not interfere with City's ability to construct any planned bicycle or pedestrian facilities in the future.

4 Summary

The key findings of the project trip generation, site access, and LOS analysis presented in this Memo are summarized below:

- The proposed project could generate approximately 104 to 280 daily trips, 9 to 42 AM peak hour trips, and 10 to 39 PM peak hour trips (Table 1), depending on the type of warehouse constructed. This equates to 155 to 420 daily PCEs, 14 to 64 AM peak hour PCEs, and 15 to 59 PM peak hour PCEs. By applying a trip credit for the existing manufacturing building to be demolished, in most instances, the project generates fewer trips than the existing manufacturing use. Using the highest, most conservative rate for the proposed use (ITE Code 156), the project would generate no new daily trips, a net increase in 12 AM peak hour trips, and a net decrease in 5 PM peak hour trips (Table 2).
- The proposed Project would not result in unacceptable queueing conditions into or out of the Project site (Table 3). No impacts would occur.
- Bicyclist and pedestrian safety would be maintained at existing levels in the area since the project is not changing the existing land use and would result in a negligible increase in project related trips.

[^2]
Attachment A: ITE Land Use Codes

ITE Land Use:	150, Warehousing
Average Sample Size:	292,000 SF
Number of Studies:	31 studies

Land Use: 150 Warehousing

Description

A warehouse is primarily devoted to the storage of materials, but it may also include office and maintenance areas. High-cube transload and short-term storage warehouse (Land Use 154), highcube fulfillment center warehouse (Land Use 155), high-cube parce! hub warehouse (Land Use 156), and high-cube cold storage warehouse (Land Use 157) are related uses.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://wwwite.org/technical-resources/topics/trip-. and-parking-generation/).

The sites were surveyed in the 1980 s, the 1990 s, the 2000 s, and the 2010 s in California, Connecticut, Minnesota, New Jersey, New York, Ohio, Oregon, Pennsylvania, and Texas.

Source Numbers

$184,331,406,411,443,579,583,596,598,611,619,642,752,869,875,876,914,940,1050$

ITE Land Use:
Average Sample Size: $\quad 886,000$ SF
Number of Studies: 10 studies

Land Use: 155 High-Cube Fulfillment Center Warehouse

Description

A high-cube warehouse (HCW) is a building that typically has at least 200,000 gross square feet of floor area, has a celling height of 24 feet or more, and is used primarily for the storage and/ or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retall locations or other warehouses. A typical HCW has a high level of on-site automation and logistics management. The automation and logistics enable highly-efficient processing of goods through the HCW . A high-cube warehouse can be free-standing or located in an industrial park.

Warehousing (Land Use 150), high-cube transload and short-term storage warehouse (Land Use 154), high-cube parcel hub warehouse (Land Use 156), and high-cube cold storage warehouse (Land Use 157) are related land uses.

Land Use Subcategory

Each fulfilment center in the ITE database has been categorized as either a sort or non-sort facility. A sort facility is a fulfillment center that ships out smaller items, requiring extensive sorting, typically by manual means. A non-sort facility is a fulfilment center that ships large box items that are processed primarily with automation rather than through manual means. Separate sets of data plots are presented for the sort and non-sort fulfillment centers. Some limited assembly and repackaging may occur within the facility.

Additional Data

A high-cube warehouse may contain a mezzanine. In a HCW setting, a mezzanine is a freestanding. semi-permanent structure that is commonly supported by structural steel columns and that is lined with racks or shelves. The gross floor area (GFA) values for the study sites in the database for this land use do NOT include the floor area of the mezzanine. The GFA values represent only the permanent ground-floor square footage.

The amount of office/employee welfare space that is provided within a HCW can be highly variable but is typically an insignificant portion of the overall building square footage. Within the trip generation database, common values are between 3,000 and 5,000 square feet for a Cold Storage HCW and between 5,000 and 10,000 square feet for Transload, Fulfillment Center, and Parcel Hub HCW (all of which are less than one percent of total GFA for a site). Therefore, for the trip generation data plots, any office space that is part of the normal operation of the warehouse is included in the total GFA.

The High-Cube Warehouse/Distribution Center-related land uses underwent specialized consideration through a commissioned study titled "High-Cube Warehouse Vehicle Trip Generation Analysis," published in October 2016. The results of this study are posted on the ITE website at http://library.ite.org/pub/a3e6679a-e3a8-bf38-7f29-2961becdd498.

Land Use: 156 High-Cube Parcel Hub Warehouse

Description

A high-cube warehouse (HCW) is a building that typically has at least 200,000 gross square feet of floor area, has a ceiling height of 24 feet or more, and is used primarily for the storage and/ or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. A typical HCW has a high level of on-site automation and logistics management. The automation and logistics enable highly-efficient processing of goods through the HCW. A high-cube warehouse can be free-standing or located in an industrial park.

A high-cube parcel hub warehouses typically serves as a regional and local freight-forwarder facility for time sensitive shipments via airfreight and ground carriers. A site can also include truck maintenance, wash, or fueling facilities. Some limited assembly and repackaging may occur within the facility.

A high-cube warehouse may contain a mezzanine. In a HCW setting, a mezzanine is a freestanding, semi-permanent structure that is commonly supported by structural steel columns and that is lined with racks or shelves. The gross floor area (GFA) values for the study sites in the database for this land use do NOT include the floor area of the mezzanine. The GFA values represent only the permanent ground-floor square footage.

The amount of office/employee welfare space that is provided within a HCW can be highly variable but is typically an insignificant portion of the overall building square footage. Within the trip generation database, common values are between 3,000 and 5,000 square feet for a Cold Storage HCW and between 5,000 and 10,000 square feet for Transload, Fulfillment Center, and Parcel Hub HCW (all of which are less than one percent of total GFA for a site). Therefore, for the trip generation data plots, any office space that is part of the normal operation of the warehouse is included in the total GFA.

Warehousing (Land Use 150), high-cube transload and short-term storage warehouse (Land Use 154), high-cube fulfillment center warehouse (Land Use 155), and high-cube cold storage warehouse (Land Use 157) are related land uses.

Additional Data

The High-Cube Warehouse/Distribution Center-related land uses underwent specialized consideration through a commissioned study titled "High-Cube Warehouse Vehicle Trip Generation Analysis," published in October 2016. The results of this study are posted on the ITE website at http://library.ite.org/pub/a3e6679a-e3a8-bf38-7f29-2961becdd498.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip

Attachment B: Queuing Analysis Worksheets

Intersection: 1: Main St \& North Project Dwy

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	31	31
Average Queue (ft)	4	2
95th Queue (ft)	21	16
Link Distance (ft)	357	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		75
Storage Bay Dist (ft)		
Storage Blk Time $(\%)$		
Queuing Penalty (veh)		

Intersection: 2: Main St \& South Project Dwy/Savarona Wy

Movement	EB	WB	SB
Directions Served	R	LTR	LT
Maximum Queue (ft)	31	36	53
Average Queue (ft)	1	15	12
95th Queue (ft)	10	40	42
Link Distance (ft)	248	232	123
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Network Summary
Network wide Queuing Penalty: 0

Intersection: 1: Main St \& North Project Dwy

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	31	24
Average Queue (t)	10	1
95th Queue (ft)	34	9
Link Distance (ft)	357	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (t)		75
Storage BIk Time (\%)		
Queuing Penalty (veh)		

Intersection: 2: Main St \& South Project Dwy/Savarona Wy

Movement	EB	WB	SB
Directions Served	R	LTR	LT
Maximum Queue (ft)	31	74	40
Average Queue (ft)	4	32	4
95th Queue (ft)	22	61	23
Link Distance (ft)	248	232	123
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 0

Intersection: 1: Main St \& North Project Dwy

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	30	24
Average Queue (ft)	2	2
95th Queue (ft)	15	15
Link Distance (ft)	357	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		75
Storage Blk Time (\%)		

Intersection: 2: Main St \& South Project Dwy/Savarona Wy

Movement	EB	WB	SB
Directions Served	R	LTR	LT
Maximum Queue (ft)	12	31	61
Average Queue (ft)	1	15	13
95th Queue (ft)	8	40	43
Link Distance (ft)	248	232	123
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Network Summary
Network wide Queuing Penalty: 0

Queuing and Blocking Report
 Existing plus Project

Existing plus Project

Intersection: 1: Main St \& North Project Dwy

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	31	30
Average Queue (ft)	7	2
95th Queue (ft)	28	13
Link Distance (ft)	357	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		75
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 2: Main St \& South Project Dwy/Savarona Wy

Movement	EB	WB	SB
Directions Served	R	LTR	LT
Maximum Queue (ft)	31	74	40
Average Queue (ft)	4	32	4
95 th Queue (ft)	21	61	23
Link Distance (ft)	248	232	123
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Network Summary
Network wide Queuing Penalty: 0

Intersection: 1: Main St \& North Project Dwy

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	48	36	4
Average Queue (ft)	19	6	0
95th Queue (ft)	45	26	3
Link Distance (ft)	357		370
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		75	
Storage Blk Time (\%)			

Intersection: 2: Main St \& South Project Dwy/Savarona Wy

Movement	EB	WB	SB
Directions Served	R	LTR	LT
Maximum Queue (ft)	31	41	57
Average Queue (ft)	8	14	13
95th Queue (ft)	30	40	43
Link Distance (ft)	248	232	123
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Network Summary

Network wide Queuing Penalty: 0

Queuing and Blocking Report Existing plus Project	Existing plus Project PM Peak Hour

Intersection: 1: Main St \& North Project Dwy

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	42	38
Average Queue (ft)	11	9
95th Queue (ft)	36	33
Link Distance (ft)	357	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft$)$	75	
Storage Blk Time (\%)		

Intersection: 2: Main St \& South Project Dwy/Savarona Wy

Movement	EB	WB	SB
Directions Served	R	LTR	LT
Maximum Queue (ft)	31	77	40
Average Queue (ft)	8	33	4
95th Queue (ft)	30	61	23
Link Distance (ft)	248	232	123
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Network Summary
Network wide Queuing Penalty: 0

Attachment C: Raw Traffic Count Data

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

[^0]: ${ }^{1}$ City of Carson. 2004. General Plan Transportation and Infrastructure Element.

[^1]: ${ }^{2}$ Institute of Transportation Engineers. 2021. Trip Generation Handbook, 11 ${ }^{\text {th }}$ Edition

[^2]: ${ }^{3}$ City of Carson. 2013. Carson Master Plan of Bikeways.

